ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

На какие группы делятся органические соединения. Удивительный мир органических веществ. Общие положения теории

Классификация органических веществ.

Химию можно разделить на 3 большие части: общую, неорганическую и органическую.

Общая химия рассматривает закономерности, относящиеся ко всем химическим превращениям.

Неорганическая химия изучает свойства и превращения неорганических веществ.

Органическая химия это большой и самостоятельный раздел химии, предметом изучения которого, являются органические вещества:

- их строение;

- свойства;

- методы получения;

- возможности практического использования.

Название органической химии предложил шведский ученый Берцелиус.

До начала 19 века все известные вещества делили по их происхождению на 2 группы:

1) вещества минеральные (неорганические) и

2) вещества органические .

Берцелиус и многие ученые тех времен считали, что органические вещества могут образовываться только в живых организмах при помощи некой «жизненной силы». Такие идеалистические взгляды назывались виталистическими (от лат. «vita» - жизнь). Они задерживали развитие органической химии как науки.

Большой удар взглядам виталистов нанес немецкий химик В. Велер . Он впервые получил органические вещества из неорганических:

В 1824 г. – щавелевую кислоту, а

В 1828 г. – мочевину.

В природе щавелевая кислота встречается в растениях, а мочевина образуется в организме человека и животных.

Подобных фактов становилось все больше.

В 1845 г. нем. ученый Кольбе синтезировал уксусную кислоту из древесного угля .

В 1854 г. французский ученый М. Бертло синтезировал жироподобное вещество.

Становилось ясно, что никакой «жизненной силы» не существует, что вещества, выделенные из организмов животных и растений, могут быть синтезированы искусственным путем, что они имеют ту же природу, что и все прочие вещества.

В наши дни органическими веществами считают углеродсодержащие вещества, которые образуются в природе (живых организмах) и могут быть получены синтетическим путем. Поэтому органическую химию называют химией соединений углерода .

Особенности органических веществ .

В отличие от неорганических, органические вещества имеют ряд особенностей, которые обусловлены особенностями строения атома углерода.

Особенности строения атома углерода.

1) В молекулах органических веществ атом углерода находится в возбужденном состоянии и проявляет валентность, равную IV.

2) При образовании молекул органических веществ электронные орбитали атома углерода могут подвергаться гибридизации (гибридизация это выравнивание электронных облаков по форме и энергии ).

3) Атомы углерода в молекулах органических веществ способны взаимодействовать друг с другом, образуя цепи и кольца.

Классификация органических соединений.

Существуют различные классификации органических веществ :

1) по происхождению,

2) по элементному составу,

3) по типу углеродного скелета,

4) по типу химических связей,

5) по качественному составу функциональных групп.

Классификация органических веществ по происхождению .

Классификация органических веществ по элементному составу.

Органические вещества

углеводороды

кислородсодержащие

Кроме углерода, водорода и кислорода содержат азот и другие атомы.

Состоят из углерода и водорода

Состоят из углерода, водорода и кислорода

Предельные УВ

Непредельные УВ

Аминокислоты

Ароматические УВ

Альдегиды

Карбоновые кислоты

Нитросоединения

Эфиры (простые и сложные)

Углеводы

Классификация органических веществ по типу углеродного скелета.

Углеродный скелет – это последовательность химически связанных между собой атомов углерода.

Классификация органических веществ по типу химических связей.

Классификация органических веществ по качественному составу функциональных групп.

Функциональная группа постоянная группа атомов, которая определяет характерные свойства вещества.

Функциональная группа

Название

Класс органических в-в

Суффиксы и префиксы

-F, - Cl, - Br, - J

Фтор, хлор, бром, йод (галоген)

галогенопроизвоные

фтрометан

хлорметан

бромметан

йодметан

гидроксил

Спирты, фенолы

- С = О

карбонил

Альдегиды, кетоны

- аль

метаналь

- СООН

карбоксил

Карбоновые кислоты

метановая кислота

- N О2

нитрогруппа

Нитросоединения

Нитро-

нитрометан

- N Н2

аминогруппа

- амин

метиламин

Урок 3-4

Тема: Основные положения теории строения органических соединений

.

Причины многообразия органических веществ (гомология, изомерия ).

К началу второй половины XIX века было известно достаточно много органических соединений, но единой теории, объясняющей их свойства, не существовало. Попытки создания такой теории предпринимались неоднократно. Успехом не увенчалась ни одна.

Созданием теории строения органических веществ мы обязаны .

В 1861 году на 36 съезде немецких естествоиспытателей и врачей в г. Шпейере Бутлеров делает доклад, в котором излагает основные положения новой теории – теории химического строения органических веществ.

Теория химического строения органических веществ возникла не на пустом месте.

Объективными предпосылками ее появления явились :

1) социально-экономические предпосылки .

Бурное развитие промышленности и торговли с началаXIX столетия предъявляли высокие требования ко многим отраслям науки, в том числе и органической химии.

Они поставили перед этой наукой новые задачи :

- получение красителей синтетическим путем,

- совершенствование методов переработки с/х продуктов и др.

2) Научные предпосылки .

Фактов, требовавших объяснения было много:

- Ученые не могли объяснить валентность углерода в таких, например, соединениях, как этан, пропан и др.

- Ученые химики не могли объяснить почему два элемента: углерод и водород могут образовывать такое большое количество различных соединений и почему орг. веществ существует так много.

- Было непонятно - почему могут существовать органические вещества с одинаковой молекулярной формулой (С6Н12О6 – глюкоза и фруктоза).

Научно обоснованный ответ на эти вопросы и дала теория химического строения органических веществ.

К моменту появления теории многое уже было известно :

- А. Кекуле предложил четырехвалентность атома углерода для органических соединений.

- А. Купер и А. Кекуле высказали предположение об углерод-углеродной связи и о возможности соединения атомов углерода в цепи.

В 1860 г . на Международном конгрессе химиков были четко определены понятия об атоме, молекуле, атомном весе, молекулярном весе .

Суть теории химического строения органических веществ можно выразить следующим образом :

1. Все атомы в молекулах органических веществ соединены между собой в определенном порядке химическими связями согласно их валентности.

2. Свойства веществ зависят не только от того, какие атомы и сколько их входит в состав молекулы, но и от порядка соединения атомов в молекуле .

Порядок соединения атомов в молекуле и характер их связей Бутлеров назвал химическим строением .

Химическое строение молекулы выражается структурной формулой , в которой символы элементов соответствующих атомов соединяются черточками (валентными штрихами) которые обозначают ковалентные связи.

Структурная формула передает :

Последовательность соединения атомов;

Кратность связей между ними (простые, двойные, тройные).

Изомерия - это существование веществ, имеющих одинаковую молекулярную формулу, но разные свойства.

Изомеры – это вещества, имеющие одинаковый состав молекул (одну и туже молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы можно предвидеть свойства.

Свойства веществ зависят от типа кристаллической решетки.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

Значение теории.

Созданная Бутлеровым теория сначала была встречена научным миром отрицательно, т. к. ее идеи противоречили господствующему в то время идеалистическому мировоззрению, но через несколько лет теория стала общепризнанной, этому способствовали следующие обстоятельства:

1. Теория навела порядок в том невообразимом хаосе, в котором была органическая химия до нее. Теория позволила объяснить новые факты, доказала, что с помощью химических методов (синтеза, разложения и др. реакций) можно установить порядок соединения атомов в молекулах.

2. Теория внесла новое в атомно-молекулярное учение

Порядок расположения атомов в молекулах,

Взаимное влияние атомов

Зависимость свойств от молекулы вещества.

3. Теория сумела не только объяснить уже известные факты, но и дала возможность предвидеть свойства органических веществ на основании строения синтезировать новые вещества.

4. Теория позволила объяснить многообразие химических веществ.

5. Она дала мощный толчок синтезу органических веществ.

Развитие теории шло, как и предвидел Бутлеров, главным образом по двум направлениям :

1. Изучение пространственного строения молекул (реального расположения атомов в трехмерном пространстве)

2. Развитие электронных представлений (выявление сущности химической связи).

Вы приступаете к изучению органической химии, с которой только немного ознакомились в 9 классе. Почему «органической»? Обратимся к истории.

Еще на рубеже IX-X вв. арабский алхимик Абу Бакр ар-Рази (865-925) впервые разделил все химические вещества по их происхождению на три царства: минеральные, растительные и животные вещества. Эта уникальная классификация просуществовала почти тысячу лет.

Тем не менее в начале XIX в. возникла необходимость объединить химию веществ растительного и животного происхождения в единую науку. Такой подход покажется вам логичным, если вы имеете хотя бы элементарные представления о составе живых организмов.

Из курса естествознания и начальных курсов биологии вы знаете, что в состав любой живой клетки, как растительной, так и животной, обязательно входят белки, жиры, углеводы и другие вещества, которые принято называть органическими. По предложению шведского химика Й. Я. Берцелиуса с 1808 г. науку, изучающую органические вещества, стали называть органической химией.

Идея химического единства живых организмов на Земле так восхитила ученых, что они даже создали красивое, но ложное учение - витализм, согласно которому считалось, что для получения (синтеза) органических соединений из неорганических необходима особая «жизненная сила» (vis vitalis). Ученые полагали, что жизненная сила обязательный атрибут только живых организмов. Отсюда следовал и ложный вывод о том, что синтез органических соединений из неорганических вне живых организмов - в пробирках или промышленных установках - невозможен.

Виталисты резонно утверждали, что важнейший основополагающий синтез на нашей планете - фотосинтез (рис. 1) невозможен вне зеленых растений.

Рис. 1.
Фотосинтез

Упрощенно процесс фотосинтеза описывают уравнением

Невозможны, по утверждению виталистов, и любые другие синтезы органических соединений вне живых организмов. Однако дальнейшее развитие химии и накопление новых научных фактов доказало, что виталисты глубоко заблуждались.

В 1828 г. немецкий химик Ф. Вёлер синтезировал органическое соединение мочевину из неорганического вещества цианата аммония. Французский ученый М. Берт-ло в 1854 г. получил в пробирке жир. В 1861 г. русский химик А. М. Бутлеров синтезировал сахаристое вещество. Витализм потерпел крах.

Сейчас органическая химия представляет собой бурно развивающуюся отрасль химической науки и производства. В настоящее время насчитывается более 25 миллионов органических соединений, среди которых есть и такие вещества, которые до сегодняшнего дня не были обнаружены в живой природе. Получение этих веществ стало возможным благодаря результатам научной деятельности химиков-органиков.

Все органические соединения по происхождению можно условно разделить на три типа: природные, искусственные и синтетические.

Природные органические соединения - это продукты жизнедеятельности живых организмов (бактерий, грибов, растений, животных). Это хорошо известные вам белки, жиры, углеводы, витамины, гормоны, ферменты, натуральный каучук и др. (рис. 2).

Рис. 2.
Природные органические соединения:
1-4 - в волокнах и тканях (шерстяных 1, шелковых 2, льняных 3, хлопчатобумажных 4); 5-10 - в продуктах питания (молоке 5, мясе 6, рыбе 7, растительном и сливочном масле 8, овощах и фруктах 9, крупах и хлебе 10); 11, 12 - в топливе и сырье для химической промышленности (природном газе 11, нефти 12); 13 - в древесине

Искусственные органические соединения - это продукты химически преобразованных природных веществ в соединения, которые в живой природе не встречаются. Так, на основе природного органического соединения целлюлозы получают искусственные волокна (ацетатное, вискозное, медно-аммиачное), негорючие кино- и фотопленки, пластмассы (целлулоид), бездымный порох и др. (рис. 3).


Рис. 3. Изделия и материалы, изготовленные на основе искусственных органических соединений: 1,2 - искусственные волокна и ткани; 3 - пластмасса (целлулоид); 4 - фотопленка; 5 - бездымный порох

Синтетические органические соединения получают синтетическим путем, т. е. соединением более простых молекул в более сложные. К ним относятся, например, синтетические каучуки, пластмассы, лекарственные препараты, синтетические витамины, стимуляторы роста, средства защиты растений и др. (рис. 4).

Рис. 4.
Изделия и материалы, полученные на основе синтетических органических соединений:
1 - пластмассы; 2 - лекарственные средства; 3 - моющие средства; 4 - синтетические волокна и ткани; 5 - краски, эмали и клеи; 6 - средства для борьбы с насекомыми; 7 - удобрения; 8 - синтетические каучуки

Несмотря на огромное многообразие, все органические соединения имеют в своем составе атомы углерода. Поэтому органическую химию можно назвать химией соединений углерода.

Наряду с углеродом, в состав большинства органических соединений входят атомы водорода. Эти два элемента образуют ряд классов органических соединений, которые так и называют - углеводороды. Все остальные классы органических соединений можно рассматривать как производные углеводородов. Это позволило немецкому химику К. Шорлеммеру дать классическое определение органической химии, которое не потеряло своего значения и более 120 лет спустя.

Например, при замене одного атома водорода в молекуле этана С 2 Н 6 на гидроксильную группу -ОН образуется хорошо знакомый вам этиловый спирт С 2 Н 5 ОН, а при замене атома водорода в молекуле метана СН 4 на карбоксильную группу -СООН образуется уксусная кислота СН 3 СООН.

Почему же из более чем ста элементов Периодической системы Д. И. Менделеева именно углерод стал основой всего живого? Многое вам станет понятно, если вы прочтете следующие слова Д. И. Менделеева, написанные им в учебнике «Основы химии»: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах... Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях... Ни в одном из элементов... способности к усложнению не развито в такой степени, как в углероде... Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Химические связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических соединений, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) - в растения (фотосинтез), из растений - в животные организмы, из живого - в неживое, из неживого - в живое (рис. 5).

Рис. 5.
Круговорот углерода в природе

И в заключение отметим ряд особенностей, характеризующих органические соединения.

Так как молекулы всех органических соединений содержат атомы углерода, а практически все - и атомы водорода, то большинство из них горючи и в результате горения образуют оксид углерода (IV) (углекислый газ) и воду.

В отличие от неорганических веществ, которых насчитывается около 500 тысяч, органические соединения более многообразны, поэтому их число насчитывает сейчас более 25 миллионов.

Многие органические соединения построены более сложно, чем неорганические вещества, и многие из них имеют огромную молекулярную массу, например белки, углеводы, нуклеиновые кислоты, т. е. вещества, благодаря которым происходят жизненные процессы.

Органические соединения образованы, как правило, за счет ковалентных связей и потому имеют молекулярное строение, а следовательно, обладают невысокими температурами плавления и кипения, термически неустойчивы.

Новые слова и понятия

  1. Витализм.
  2. Фотосинтез.
  3. Органические соединения: природные, искусственные и синтетические.
  4. Органическая химия.
  5. Особенности, характеризующие органические соединения.

Вопросы и задания

  1. Используя знания по курсу биологии, сравните химический состав растительной и животной клеток. Какие органические соединения входят в их состав? Чем отличаются органические соединения растительной и животной клеток?
  2. Опишите круговорот углерода в природе.
  3. Объясните, почему возникло учение витализм и как оно потерпело крах.
  4. Какие типы органических соединений (по происхождению) вы знаете? Приведите примеры и укажите области их применения.
  5. Вычислите объем кислорода (н. у.) и массу глюкозы, образующиеся в результате фотосинтеза из 880 т углекислого газа.
  6. Вычислите объем воздуха (н. у.), который потребуется для сжигания 480 кг метана СН4, если объемная доля кислорода в воздухе составляет 21%.

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В зависимости от строения углеродных цепей среди органических соединений выделяются следующие три ряда:

1) соединения с открытой цепью атомов углерода, которые также называются ациклическими, или соединения жирного ряда (это название возникло исторически: к первым соединениям с длинными незамкнутыми углеродными цепями принадлежали кислоты).

В зависимости от характера связей между атомами углерода эти соединения подразделяются на: а) предельные (или насыщенные), которые содержат в молекулах только простые (ординарные) связи; б) непредельные (или ненасыщенные), в молекулах которых имеются кратные (двойные или тройные) связи между атомами углерода;

2) соединения с замкнутой цепью атомов углерода, или карбоциклические. Эти соединения, в свою очередь, подразделяются:

а) на соединения ароматического ряда.

Они характеризуются наличием в молекулах особой циклической группировки из шести атомов углерода – бензольного ароматического ряда.

Эта группировка отличается характером связей между атомами углерода и придает содержащим ее соединениям особые химические свойства, которые называются ароматическими свойствами;

б) алициклические соединения – это все остальные карбоциклические соединения.

Они различаются по числу атомов углерода в цикле и в зависимости от характера связей между этими атомами могут быть предельными и непредельными;

3) гетероциклические соединения.

В молекулах этих соединений имеются циклы, которые включают, кроме атомов углерода, также гетероатомы .

В рядах ациклических (жирных) и карбоциклических соединений простейшими являются углеводороды. Все остальные соединения этих рядов рассматриваются как производные углеводородов, которые образованы замещением одного, двух или нескольких атомов водорода в углеводородной молекуле другими атомами или группами атомов.

Остатки углеводородов, которые образуются при отнятии от их молекул одного, двух или нескольких атомов водорода, называются углеводородными радикалами.

Атомы или группы атомов, которые замещают водород в углеводородной основе, образуют функциональные или характеристические (этот термин разработан Международным союзом теоретической и прикладной химии) группы, обусловливающие общие химические свойства веществ, которые принадлежат к одному и тому же классу производных углеводородов.

Виды органических соединений:

1) галогенопроизводные углеводороды: а) фторпроизводные; б) хлорпроизводные; в)бромопроизводные, г) йодопроизводные;

2) кислородосодержащие соединения: а) спирты и фенолы; б) простые эфиры; в) альдегиды; г) кетоны.

8. Типы органических соединений

Органические реакции, как и неорганические, подразделяются на 3 основных типа:

1) реакция замещения: СН 4 + CI 2 → СН 3 CI + НCI;

2) реакция отщепления: СН 3 СН 2 Br → СН 2 = СН 2 + НBr;

3) реакция присоединения: СН 2 = СН 2 + НBr → CН 3 СН 2 Br.

К реакциям присоединения относятся реакции полимеризации. Особым типом органических реакций являются реакции поликонденсации. Органические реакции можно классифицировать и по механизму разрыва ковалентных связей в реагирующих молекулах.

В зависимости от двух способов разрыва ковалентных связей и строится данная классификация.

1. Если общая электронная пара делится между атомами, то образуются радикалы. Радикалы – это частицы, имеющие неспаренные электроны. Такой разрыв связи называется радикальным (гомолитическим). Особенность данной связи заключается в том, что радикалы, которые образуются, взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом.

Образующиеся радикалы взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом: CН· 3 + CI 2 → СН 3 CI + CI.

По радикальному механизму протекают реакции, в которых разрыву подвергаются связи малой полярности (С-С, С-Н, N-N) при высокой температуре, под действием света или радиоактивного излучения.

2. Если при разрыве связи общая электронная пара остается у одного атома, то образуются ионы – катион и анион. Такой механизм называется ионным или гетеролитическим. Он приводит к образованию органических катионов или анионов: 1) хлористый метил образует метил-катион и хлорид-анион; 2) метил-литий образует литий-катион и метил-анион.

Органические ионы вступают в дальнейшие превращения. При этом катионы взаимодействуют с нуклеофильными («любящими ядра») частицами, а органические анионы – с электрофильными («любящими электроны») частицами (катионы металлов, галогены и др.).

Ионный механизм наблюдается при разрыве полярной ковалентной связи (углерод – галоген, углерод – кислород и др.).

Органические ионные частицы подобны ионам в неорганической химии – имеют соответствующие заряды. Однако они и резко отличаются: ионы неорганических соединений присутствуют в водных растворах постоянно, а органические ионные частицы возникают только в момент реакции.

Поэтому во многих случаях необходимо говорить не о свободных органических ионах, а о сильно поляризованных молекулах.

Радикальный механизм наблюдается при разрыве неполярной или малополярной ковалентной связи (углерод – углерод, углерод – водород и т. д.).

Органические ионные частицы подобны ионам в неорганической химии – они имеют соответствующие заряды.